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ABSTRACT 4
A new family of life models proposed by Claser (1980) I1t ,( - L ie.

of the form C(0l.02,Pexp(-0t-02t + 3 og-t ]. 'l' laImlily incl,i ,dS 11

gamma distributions, all exponential distributions, all normal distribu-

tions left truncated at zero, and a viriety of distrilILions having

bathtub shaped failure rate functions. In this paper statistical in-

ference for the family is considered with an emphasis on determining

whether the sampled model fits the bathtub category.

1. TNTRODUCTION

A family ; of life distributions has been proposed by Glaser (1980).

It is characterized by the collection of density ftunctions of the form

f(t) = C(el, 2 ,03 )exp-@ 1 t - 92 t2 +03 log t]. O<t. (1.1)

where C is a normalizing constant, and the (natural) parameter space is

the union of [(9l.029%) :0- < 0 1 <W, 2 > 0, 03 > - 1) and

((Give2,02,3 e 1 > 0, 02 0, 03 > - 1]. The special case 82 - 0 gives

the class of all &amma densities. The special case 02 > 0, 03 - 0

gives the class of all truncated normal densities with left truncation

at 0. Usefulness of the family derives from Its failure rate proper-

ties. (Cf. Glaser (1980).) Let r(t) = f(t)/F(t) denote the failure

AIR _1 G'F!, OF 3fIENTIFIC RESEARCH (AFSC)
NOTICE 01" ',.' :-1'7.%L T1 )C
This . . . bcon revieed and isappr0vtd fc -. .c -Ic(ase IAV; A.FR 190-12 (7b).
Ditributioa 13 ullimited.
A. D. HLOSE
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rate function, where F(t) tIf f2 > 0 and 9 > 0, then r(t)

is monotone increasing (IFR); however, if 02 > 0 and 03 < 0, then r(t)

is bathtub shaped (BT): precisely, there exists t0 > 0 such that r(t)

is strictly decreasing for t < to and strictly increasing for t -1 tO.

For the gamma situation 9 = 0, r(t) is monotone decreasing (DFR) if
2

93 < 0, constant if 19 = 0 (the exponential density case), and monotone3 3

increasing if 93 > 0. The family thus constitutes a rich class of models,

encompassing all gamma distributions and all normal distributions left

truncated at zero, as well as a variety of distributions having bathtub

shaped failure rate functions. The latter property is of practical

concern, since a bathtub failure rate corresponds to the common phenome-

non of an item's improving with age initially and deteriorating with age

eventually. In this paper statistical inference for the family wilL be

considered with an emphasis on determining whether the model sampled fits

the bathtub category.

Maximum likelihood estimation of the parameters based on random

sampling is reviewed in Section 2. In Section 3 various hypothesis

tests are proposed which address the question of whether a bathtub

classification is appropriate. Finally, in Section 4 maximum likelihood

estimation based on type II censoring is considered. Included is an

estimate of the location of the bathtub's "plug."

2. MAXIMUM LIKELIHOOD ESTIMATION BASED ON RANDOM SAMPLING

Maximum likelihood estimation of the parameters under random sampling

is discussed by Glaser (1978). The maximization is complicated by the



ill
different roles played by QI depending on whether it is positive, zero,

or negative. A re-parametrization motivated by 'lIl's being basicaLly

a scale parameter proves effective. The overall family of models

comprises the following four classes:

Class 1. f(t)-[x/r(,p)]exp[-Xt-e(xt) 2(Xt) p I , XO,0 -O,p 0 ., (2.1)

where r(o,p) is defined by r(@,p)=0O exp[-y-ey21yP'idy.

Class 2. f(t)-[8/A(@,p)Jexp[St-@(6t) 2](8t) P - , 6>O,0>O,p>O, (2.2)

where A(Qp) is defined by A(P) = exp[y-9y2 )yp'dy.

10

Class 3. f(t)-[2X/r(p/2)3exp[-(Xt)2 ](Xt) p ' ', %>O,P>O, (2.3)

where r(.) is the gamma function, defined by

( "fexp(-Yy Ygldy.

0

Class 4. f(t)=[x/r(p)]exp[-Xt)(Xt) P ° , X>o,p>O. (2.4)

Class 1 is formed from e > 0, 2 > 0; Class 2 is formed from e < 0,

1 2
@2 > 0; Class 3 is formed from e1 - 0, e2 > 0; and Class 4 is formed

from @1 > 0, '2 = 0. For Classes 1, 2, and 3, f is BT if p < 1, TFR

if p > 1, and truncated normal if p - 1. Class 4 is the class of

gamma densities, with f DFR if p < 1, TFR if p > , and exponential

if p - 1.

As described by Glaser (1978), the maximum likelihood estimator of

(0 1 ,S 2 ,6 3 ) can be computed by the following algorithm. Let

t - (ti,... t) denote the observed random sample. For each Class i

1i,2,3,4, let Li(t) denote the likelihood function based on the

Ah
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corresponding parametrization (for example, L (t) L (t;Xe,p) = fl f(t.)
1

with f(t) taken from (2.1)), and let li(t) denote the maximized likeli-

hood for the class. Hence, for Class 1, if (X( ,( p ) delOtCs the

MLE of (X,e,p) based on (2.1), then L1(t) is the maximized likelihood for

Class 1, i.e., L1(t) - L (t;X ,0 ,p(1. The overall maximum likeli-
A A

hood is L(t) - maxI<i<4LI(t), and the MLE of (0l,02,t03) is the valc of

(01,02,03) corresponding to the MLE of the parameters in the class with

the largest maximized likelihood. For example, if L(t) = 2(t), then

the MLE of (ele 2,e3) is ( ).

Computational algorithms for the MLEs for the individual classes

are presented by Glaser (1978). To review, let (s1,s2,s3) denote

1 1 221 Af~Al I
(- ti -t n o t. Then ((,( )) is the solution

to the system of equations s12/s -2r (Op+)/F(o,p)(Oe,p+2),

s 3 - log s1 - t(e,p) - log[r(mp + 1)/r(ep)], and X = r(e,p + I)/slr(G,p),

where *(O,p) is defined by *(9,p) - (iap) logr(e,p)

- Cr(e,p)] 1 JO exp[- y-y 2 ]yPllogy dy. Similarly, (62, (2);(2)

is the solution to the system of equations sa /s 2 A 2(O,p+l)/A(e,p)A(O,p+2),

s3 - logs, = C(e,p)-log[A(e,p+l)/A(Q,p)], and 6=A(e,+1)/sIA(e,p), where

C(,p) is defined by C(e,p) - (/p) logA(M,p)

- EA(e'p)]1 J0exp[y_y 2 )yp- 1 logy dy. Also, (X( 3 ) p 3 )) is the

solution to the system of equations s3- 1logs 2  (&) - . log( ) and

2 - p/2s 2, where *(') is the psi function, defined by

- (a/aPg)log r(t) - Cr(s)] " I Dexp(-Y]yp' 1 logy dy. Finally, for

the well-known gamia parametrization, (X(4 ), p 4 ) is the solution to

the system of equations s 3 - log s, - *(p)-log p and X - p/s I .

1
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3. BATHTUB RELATED HYPOTHESIS TESTS

In this section assume T, ...,Tn constitutes a random sample taken

from some distribution in ,. Certain hypothesis tests regarding the

condition of a bathtub failure rate function will be considered.

(a) Testing H : 92 = 0 versus K :O2 > 0.

The subclass of , restricted to 0 2 = 0 represents the class of

gamma distributions, each of which has a monotone failure rate functionl.

The alternatives 02 > 0 include bathtub failure rate functions (0 3 < 0).

The form of optimum critical regions depends on whether 03 is known.

If 03 is known, a uniformly most powerful unbiased (UMPU) test

exists based on the statistic V - ZT 2/(ET)2 Since for the gamma

situation (i.e., 02 - 0), V is distributed independently of LT.

(cf. Glaser (1976)), it follows from the general theory given by Lehmann

(1959, Chapter 5) that the level a UMPU critical function is

I if v < C0

r(v) = {
0 if v > C0

where C0 is determined by the equation

2 1 . 0 [ - C0 . (3.1)
2

An (n-l)-fold integral representation of (3.1) involving the Dirichlet

distribution allows computational evaluation of C0 , Assume H: 02 = 0

I
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holds. For convenience, denote n-I by m and 03 + I by p . Define

Z T n T Then the variableZ 1 ,...,Z have a Dirichlet
i i I

distribution with joint density

m~l. . tP[(np)/rekp)3f1 mzl(1-E z )Pm

where 0 < z i <1, i=1...,m, and 0< I z[ < I. Since

-,m~ ( -2 (1- mz 2 (3.1) becomes

CV ,f' • • . Jh(z1 , ... ,z)dz ... dz, (3.2)

D(C0
)

where D(C = t(z I  ,z) : 0 < < I <.L 1 zi < I, and

" m z2 + i2
S+ (I z < C0 ]. Evaluation of C0 by means of (3.2) is com-

plicated by the awkward limits of integration. A tractable form of

(3.2) is achieved upon applying an orthogonal transformation which in-

corporatesVlzi as a variable. Consider the mxm orthogonal matrix,

0, obtained by the Gram-Schmidt orthogonalization process (cf. Kaplan

(1952)), and defined by

1 1 1 1 1

-2 2 2 2 2m . m s. . m

- tm(m-1)] 2 r(m.1)im92 .rm~a.1)) 2 -£m(m-t)) 2 . . -m(m-t)] 2

1 1 1 1
Cmm,, 2 rml/] T-1 2 2 2

O- -C(m-1)(m-2)) 0 [(m-2)/(m-l)) -f(m-l)(m-2)) " . • • -r(m-1)(m-2) 2

20 02- (-2) m-3) ' , ,  0 [(m-3/(m2) 2. . .r(m-2) (m-3)i,

1 .1
~2" 0 0 0o. 22
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The transformation u = 0 z gives

2 22 2

8m 2 1 +..+m 2z

3 1 1 1

u- -Em(m -) 2z+[(m- )/m)
2 zu- m (m- ].) ] 2z 3.....m(m 1)) 2 Z

1 1 1 1
U3 -(m1(-)" z1 +[(m.2)/(m.1))' z3-[(m-l) (m-2))"7z '(-l m2

tm*1 I I [f. .1~, -C (,,-,+2)(me-k+,.) 2 .+ ,.,,.. (., 2 - 2[O,,+ )<.,1 " ,+... [(,_,2 ,,,+ ,

1 1

u 2 z +2 z.
m m

The restrictions, 0 < z < 1, i-,...,m, and 0 <fmz < 1, translate to£ ~1i
E Ai, l,...,m, where A 1, (O,m 2), A2 (-m(m-I) 2 , (m )/m]2),

- 1 ~ 1 1

2 2 22
A 3 - (-[ (m-1) (m-2)3 , (m-2)I(m-1)j ),...,A, - (- 2 ,2 ) The condition

m z 2 + (1 -V'z)2 < C imposes marginally on u the restriction

11 1 1
2 (un(C)2< 2 2

m2/n (1/n)(nC0 . 1) < U1 < m2/n + (1/n)(nC0 - 1)2 . Consequently, (3.2)

assumes the computable form

!

o,l(l-m2ut)p'ldu .. .du , (3.3)(Ulf,... ,% • , E A nB m (C)O r . / "p ][ , ( x .,) m•
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where B (C0  (m 2/n -(l/n)(nC 0  1) 2,m2 /n+ (1/n)(nC0 - 1)2),

1Bi(o)= (,C [i-I u2 .2 2
B (C (O'C L-L 2 +(1-m u1 ) 2]), i-2,...,m, and zi(ul,...,uM

is obtained from z - O'u. For fixed CO, the right-hand-side of (3.3)

can be computed by numerical integration. Since the right-hand-side

increases with CO, the exact value of C0 corresponding to a given level

o can be found by an easy trial and error process.

A large sample approximation of C0 is readily obtained from multi-

variate central limit theorems. Assume H: 2  0 holds so that

T1 ,...,T n constitutes a random sample from a gamima distribution; for

convenience, denote 03+l by p and e1 by X. Since

E (Tk) (p+k-1)...p/Xk for k-1,2,3,4,

it follows from the multivariate Lindeberg-Levy central limit theorem
1

that under H: 0 2
= 0, n (Y " -) - N2 ( 0E ), where

Y 2+ 1)X 2  2p(p + 1) (2p + 3)/X 4  2p(p + 1)/ 3

lnand E---

1 3 2

By applying the transformation g(Yn) /Y 2 it follows (cf. Rao
fn ln 2n'

(1973, p. 387)) that

1
n2 )-( & N(O, BEB') , where

W! ngY)-



B (ag(Y)nay lag(y- n)IY 2 n) (Y (X 2/p ,-2 (p + 1)/p 2). That is,

* 1

2 .t3
n (nVn- (p+l)/p) N 1(O,2(p+l)/p3), where VV n . A large sample

approximation of C0 is therefore

c 0  
+ 1 - z r 2(p+)/P

3  1
0 n p_ or i., n

where z is defined by §(z ) 1 -ct. In computing C0 by the exact

multiple integral representation (3.3), a logical starting point would

be this large sample approximation.

If 93 is unknown, the UMPU test is conditional on the statistics
2

(T,S) = (ETjlogTj). Denote MTj by U. From the general theory of

Lehmann (1959 , Chapter 4), the critical function of the level a UMPU

test is

P(u,t,s) 1 if u < C0 (ts)

0 if u > Co(ts)

where C0 (t,s) is determined by the equation

= P,2=0 (U < CO(t,s)I(T,S) (t,s)). (3.4)

Consider the conditional distribution of (T1,... given (TS) (ts),

assuming H:0 2 a 0 holds. Again for convenience denote e1 by X and

-83+1 by p . The joint density of (T1 ,...,T n is [np/Tn(p))e(P-l)s-%t



-- e /nL
I

. . 10

Because of the independence of -I n d(Sn Tn itflosrm

Glaser (1976) that the joint density of (TS) is

rxP/npn~ n(n-3)/2= (s/(

[,np/,n(p)][ (2T) (n-l)/2n 1/2 /r(L ) t'ePS't(n log - s) "n- /2 ),

for a certain function n(). Consequently, the conditional density of
n

(T 1 ,...,Tn), given (T,S) = (t,s), is

[(11-)/(2T) (n'l)/2 n1/2te S(n log 1-s) ( - (e (n ) "  The

essential point is that the conditional density is constant (i.e.,

uniform) in (t1 ,...,tn) over the region for which Etj = t and Z log t. s.

The right-hand-side of (3.4) is thus the ratio of (n-2)-dimensional

volumes,

Volume[(tl,...,t n) :Et 1 2 < C 0 ( t ' s
) , .t j t , E l o g t im s )

Volume( (tl,.. . ,'tn: Et t'z, log tj,=s]

Unfortunately, computation of these volumes appears prohibitively com-

plicated. An exception is the rather uninteresting case n=3, where a

cubic equation can be obtained which generates C0 .

A large sample approximation for C0 (t,s) can be found by methods

similar to those used in the known a 3 case. Let

Y M (I ET 2 PnI ET, 1 E logT It follows from the multivariate
~ n n-T ;Ej n oT)

Lindeberg-Levy central limit theorem that under H:O 2 0,

1
23(f 0 z .

n Y



2 4 32p (P+)/X 2p (p+l) (2p+3)A 2p (p+l)/A (2,+I)/ ,

Awhere t P/% and , 2p(p+l)/X 3  p/X 2  1/P,
(W)-log X" \ (2p+l)/X 2  /x (p '0

More importantly, the relevant conditional distribution converges to

normality. Partition Y , p, and r- as

n, and
i n n

n ,sn \ (p)-log x1 T p A

S24 / 2 3 2
'11 1 1-'12 2p(p+l)(2p+3)/% 2p(p+l)X (2p+1)/X

I I"

3 22 9(n+1)/% /

=2 1 .-2 (22 ;1/X

From the work of Stck (1959), it follow that the limiting conditional

1 1 T

distribution of n2 .( I U, given n (

n n

I t
i~~ itmen T n21 t2-

n ) i.e., given n d) n is univariate normal
" ' n n

n n

't

with mean ~n 2 E ' - (2)N and variance a 2.

tn
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The difficulty introduced by the fact that the asymptotic conditional

distribution depends on the unknown parameters p and X will be overcome

by substituting estimators which are consistent under H. As shown by

Neyman (1955), such substitution does not affect the asymptotic proper-

ties of the test. When H : 0 = 0 is true, the (consistent) MLE, (pX),
2t

of (p,X) is the simultaneous solution to the equation (2)

(cf. Class 4 of Section 2). Consequently, the (consistent) MLE, ., of

under H is - 0. On the other hand, computation of 02 yields

2= 4p1 4  -l
o )[2(p+l) - (p*'(P)-l) so that the (consistent) MLE, CY

2 2( -) ,
of a under H is a f ( 4)[2(p+l) - (p*'(p) - ) . Finally, the

(consistent) MLE, . , of P under H is 4 P( P To

summarize, if H :e2 = 0 is true, the approximate conditional distribu-

1

tion of n2 (U -" ()/a, given ( n j  Sn , is normal with mean 0
nnSn "/ Sn

and variance 1. A large sample approximation of the level a critical

value C (t,s), from (3.4), Is therefore Co(ts) nP -nz .
00

(b) Testing It : 3 > 0 versus K : 0 < 0.
3 3

If o2 > 0, the subclass of Z restricted to 3 3 0 has only IFR

fuhctions, whereas the subclass categorized by e3 < 0 has exclusively

BT functions. The test of H versus K, assuming e2 > 0, is therefore

a test of increasing failure rate against bathtub alternatives. For

the case 2 0 0, i.e., the gamea distribution, the test of H versus K

is equivalent to testing IFR versus DFR. A UMPU test for this situation



is provided by Glaser (1973). For the remainder of this section it will

be assumed that 0 is positive but unknown.

Based on the notation (U,TS) = (ET E2TjZlogT, the level a

UMPU test is conditional on MU):

1 if s < Co(t,u)
P(s,t,u) = {

0 if s > C0 (t,u)

where C0(t,u) is determined by the equation

S= Pef0CS < C0 (t,u)j(T,t1) (t,u)]. (3.5)

When 93 = 0, the sample TI,...,T n is truncated normal; however, the con-

ditional distribution of S given (T,U) - (t,u) does not appear tractable.

Fortunately, a large sample approximation of C0 (t,u) can be found by

employing the method used in testing 02 0 with 93 unknown. Let

)= E Tj T nFrom the multivariate Lindeberg-r
Levy central limit theorem it follows that if 03 - 0, then!3

n - N3( where is the mean vector and E the covariance

matrix of (log TJT, assuming 93.0. Partition Y as

mari3 -n
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n n

Y = T , and partition . and E accordingly. Then (cf. Steck

1
n Un

(1959)), for 9 3 =0 the relevant asymptotic conditional distribution is

normal: i.e., the conditional distribution of n( - l(I))/o, given
Tn  t

M ) tends to N(O,1) where " ( )and a denote the respective

n n

(consistent) MLEs of p() and a 2 = E 2 E2E_ computed under the= l ~I 12 -22 :21' cmue ne h

assumption that 3 a 0. The large sample approximation of Co(t,u), from
3 10

(3.5), is therefore C0 (t,n) = n - n7 z c.

Computation of and a is somewhat tedious. The M.E, (@lle2),

of (0 1 ,9 2 ) is the simultaneous solution to the equation

n u  
E3OT2 EC -9)/2@2

1 n KE OT 1} l-e1 (C -e1 )/20 2

1 1
r 2 2 2~-

where, from (1.1), C C(0 1,9 2,0) i(IT/@ 2 ) exp(91 /40 2 )[I -,(6 1 (20 2 ) ) -

t
Suppose for definiteness that (un) leads to a positive value for 9 By

the invariance property of maximum likelihood, the MLEs, (1) and a , are

obtainable from the parametrization (inspired by Class I of Section 2),

2 2
[/r(e,l)]exp(-Xt-e(?t)2, X > 0, e >0 . Here X - 01 and 0 - @2/0 1

A a A 2

so that X -e01 and 0 - 021.Since this parametrization gives

(1) = t0[x/r(9,l)exp(-Xt -9(%t)23log t dt *(,I) -log ), and
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Sr(,2) r(9 3)

_ 2
r: £e.21k. . ..)(e) : __ r(e.l)re,3)-r (0.2) 1 r(e.llr(..4)lT'e.2wr(e.3)
r 'ee2"l) :] X r2 (e,l) ) 2el' (2

22rel 2 3 2
(e,)l)r(.5)-r (03)

it follows that *(0,1) -log X and, after a bit of computation,

2 ( g22 pl) 2 (glg 5-g 3 2 )- 292g 3(p2"p) (P3Pl) (glg4"g2g3)

2 2 2 2 2 2.1)12,

+ 3(p3-Pl) (glg3g2 )]/[glg3-g2 )(gg- - (glg4 -g2g3 ) " 2  where

gi a r(e,i) and p, a * (0,i). Analogous computations of 40) and a are

possible based on 01 negative or 01 zero. For negative 01 a parametriza-

tion of the Class 2 variety would be used; for 02 = 0, a Class 3 parametri-

zation would be used.

4. CENSORED SAMPLING
(a) Maximum likelihood estimation of the parameters based on

type I censored sampling.

A common sampling technique in life testing is type It censoring at

r out of n: n items are simultaneously put on test; the lifetimes of

only the first r items to fail are recorded. In effect, only the first

r order statistics, T(I) < ... < T(r) , are observed from the random sample

Tl,...,T n o of n lifetimes. To estimate the parameters, (91.02,03) , of

the sampled distribution in 7 by the method of maximim likelihood, the

basic strategy described in Section 2 for random sampling can be used;

.. .. .... . I ll I I I. . .... ." -. .. ....""w
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i.e., likelihood maximization is carried out individually for each of the

four classes, whereupon the largest of the four maxima provides the MLE

(e19e2 03). For the sake of brevity, only Class I will be considered.

Maximization for the other classes is analogous, and in the case of

Class 4 (the gamma distribution), already worked out by Wilk et al.

(1962).

For convenience, denote by Y the jth order statistic T . The

(Class 1) likelihood function is

L - nt .... .xp{ -S y a - ((Xy A -t -G(t) (Xt)p " d . :-

(n-r)I r (e,p) 1 J I l r

Following the general approach of Wilk et al. (1962), define ) r Xy

r r r 2 2

P - ( yj) /r s " y /ry r, and t " y I/ry r Then

1r r

log L* a log.n1
(n-r)t y r r

+ np log C-n logr(9,p)+ (rp-r) logp- rs - r ! 2 t

+ (n-r) log J(Q,p,C),

where J(O,p,g) - ,- xplexpl- x -O( x)2)dx. The equations (b/bp) log L O,

(b/bO) loIL - 0, and (b/gF) lo&L - 0 are equivalent, respectively, to

the equations
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p-e95 pp ;3 • I

(r§2 n 2 j(p)+(n-r)F 2J(G,p+2, )/J(O,p , (4.2)

s r 2r t-np/t+(n-r) [J(O,p+l, )+ 2 FJ(,p+2,.)]/a(,p , (4.3)

where (a/ap)r(O,p) P' exp[-y-ey2 )yp '1l ogydy and (a/Bp)J(E,p,F)"0

r=xP exp,-tx-9(§x) )logxdx. The MLEs of p,e, and t are defined

by the simultaneous solution of the equations (4.1), (4.2) and (4.3).

(Note that the MLE of X is the MLE of F divided by yr.) However, an

inverse iteration scheme for determining the MLEs is more convenient:

for any assigned p, 0, and g, use (4.1) to calculate p , (4.2) to calcui-

late t, and (4.3) with t to calculate s . Continue with the iteration

process until values of (p, 0, )are assigned which give resultant

(p,t,s) calculations equal (to a desired degree of accuracy) to the

actual observed values.

(b) Maximum likelihood estimation of the plug.

For a model in ;I having a bathtub shaped failure rate function a

parameter of interest is the point, T, known as the plug, where the failure

rate function takes on its minimum value, i.e., the point of transition

which separates decreasing failure rate from increasing failure rate. Let

S(.) denote the reciprocal of the failure rate function. Then, as shown

by Glaser (1980),



-- - T a. -.,.o . .. , o ., ,,-.-, .. J...4..... : .7 .-::. ai - -? y =..-:- 
-

11

e -e x 2 +a log x)dx

g'(t) (( + 2 42 t - 43/ t ) ) I'" exp( - 1t - e2 t2+03 logt Q -. (.):

If 9 2 > 0 and e3 < 0, the model has a bathtub shaped failure rate function,

and the plug T is the unique value of t satisfying g'(t) = 0. Since in

this case, g'(t) > 0 for t < T and g'(t) < 0 for t > T, computation of

r from (4.4) may proceed by a swift trial and error scheme. Similarly,

if the MLEs, 02 and 0 3' obtained either by random sampling or censored

sampling, satisfy 0 2 > 0 and e3 < 0, then the MLE, T, of T is the

AA A A

solution to g'(T) - 0, where (4.4) is used with (,23substituted

for (01.e2,e3

I
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